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An experimental investigation of nonlinear elastic wave behavior was conducted using a 
2-m-long cylindrical rod of Berea sandstone in order to study the strong elastic nonlinearity that 
is characteristic of microcracked materials. Measurements of the displacement field at distance 
x from the source show rich harmonic content with harmonic amplitudes depending on x, 
source frequency, and source amplitude. The amplitude of the 2to harmonic is found to grow 
linearly with x and as the square of both the source frequency ro and the source amplitude U. 
This behavior is in agreement with the predictions of nonlinear elasticity theory for a system 
with cubic anharmonicity. From the measured amplitude of the 2to harmonic the parameter 
Itel, a measure of the strength of the cubic anharmonicity, is found to be of order 
104 (7.0)< 1034- 25%). This value is orders of magnitude greater than that found in ordinary 
uncracked matehals. These results suggest that wave distortion effects due to nonlinear elasticity 
can be large in seismic wave propagation and significantly influence the relationship of seismic 
signal to seismic source. 

PACS numbers: 43.25.Dc 

INTRODUCTION 

Since the late 1950s there has been a great deal of 
research in nonlinear acoustic wave propagation. In par- 
ticular, observations of nonlinearly produced harmonic 
growth in gases, • liquids, 2'3 and uncracked solids have been 
madeft Such experiments show that nonlinear effects can 
take place along the wave propagation path well away from 
an acoustic or elastic wave source. More recently, there has 
been increasing interest in nonlinear wave processes in 
cracked solids and porous media which are characterized 
by strong elastic nonlinearity. 5'6 Earth materials are an im- 
portant example of this type of' disordered media because 
of their practical importance in geophysics and seismology. 
Only recently, laboratory and field experiments have dem- 
onstrated that significant nonlinear wave effects do indeed 

7 12 
exist in earth materials.- In this paper, we present the 
results of a laboratory study of harmonic growth in com- 
pressional waves as a function of amplitude, frequency, and 
propagation distance in Berea sandstone. 

In Sec. I, we review the results of the theoretical de- 
scription of acoustic wave propagation in a nonlinear ma- 
terial having cubic anharmonicity. We draw attention to 
the dependence of the amplitude of the 2to harmonic on 
source frequency, source amplitude, and the separation be- 
tween source and detector. In Sec. II, we describe the ex- 
perimental system. We present and describe the experi- 
mental results in Sec. III. We show qualitative evidence for 
the presence of nonlinearity in the response of the elastic 
system. Further, we show quantitative evidence that part 
of this response is due to enormous cubic anharmonicity in 
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the elasticity of the system. We determine the strength of 
the cubic anharmonic parameter B. We summarize our 
findings in Sec. IV. 

I. THEORETICAL BACKGROUND 

The equation of motion for a homogeneous elastic 
solid, to second order in the displacement (cubic anhar- 
monicity in the elastic moduli), is derived in several 
texts. •3-•5 The inclusion of linear attenuation modifies the 
equation. •6q8 Here we quote the results for elastic wave 
propagation in the absence of attenuation. Later, in our 
analysis, we assess the importance of attenuation. For a 
longitudinal plane wave propagating in the x direction, the 
equation of motion in the absence of attenuation is 18 

r•2u(x,t) 1 r•2u(x,t) r• (r•u(x,t) • 2 
od /' 

where B is the nonlinear coefficient defined as 

3(•+2p) +2(1+2m) 

2(;t+2p) 

u(x,t) is the particle displacement, c is the compressional 
velocity, it and p are second-order elastic moduli (Lam(• 
coefficients), and I and rn are third-order elastic moduli 
(Murnaghan coefficients). 

The interaction of the displacement with itself (the 
nonlinear interaction), the term on the right-hand side of 
Eq. ( 1 ), causes the creation of sum and difference frequen- 
cies and the breakdown of the wave superposition princi- 
ple. Equation ( 1 ) can be solved analytically by an iterative 
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FIG. 1. Experimental setup. 

Green's function technique. Solution to this equation for a 
source at the origin of frequency co and amplitude U is, to 
first order in the nonlinearity, 

u(x,t) =Uo(X,t) -3- u• (x,t) 

= Uei(kx-wt) Jr- (lSU2k2x/2)e i(2kx-2•øt), (2) 

where u0(x,t) is the displacement solution to the linearized 
equation of motion, and u•(x,t) is the first-order correction 
to Uo(X,t) due to the nonlinear interaction. In principle, 
Eq. (1) can be solved to higher order, iS i.e. 
U=Uo+Ui+U2+U3+'", but here we will only consider 
the first-order nonlinear term. This method of solution is 

valid as long as the energy transferred from frequency w to 
its harmonics is a small fraction of the total energy. 

Note that a source at the origin of frequency co and 
initial displacement amplitude U generates a plane wave at 
frequency co with amplitude U and a second plane wave at 
frequency 2w whose amplitude grows linearly with the dis- 
tance of propagation x, the square of the fundamental fre- 
quency co, and the square of the fundamental amplitude U. 
In our experiment, we test the distance, frequency, and 
amplitude dependence of the 2co harmonic in relation to 
the fundamental. 

II. APPARATUS AND MEASUREMENT METHODS 

The apparatus used in the experiments is shown in Fig. 
1. A 2-m-long, 6-cm-diam cylindrical sample of Berea 
sandstone was machined for the experiment. One end of 
the rod was tapered in order to minimize reflections. To 
accommodate the receiving transducers, eleven 0.3-cm- 
diam holes were drilled in the rod at intervals of 5 cm 

along a distance of 58 cm from the source transducer. The 
holes were drilled into the center of the rod at a 45 deg 
angle. Valpey-Fisher VP-1092 pin-shaped transducers 
(pinducers) were used as detectors. The pinducers are 
standard piezoelectric material set inside the bottom end of 
a thin hollow tube. (The detector sensitivity is at a maxi- 
mum for waves propagating parallel to the long axis of the 
pinducers. This geometry was impossible to obtain. There- 
fore, the pinducers were placed at 45 deg from the axis 
where their response was still very good.) 

A self-monitoring drive transducer with direct dis- 
placement measurement capability was designed and con- 

FIG. 2. Self-monitoring drive transducer for measurement of absolute 
displacement. 

structed for use as the source. The source transducer con- 

sisted of a 5-cm-diam X 0.3-cm-thick piezoelectric crystal 
in which a 0.4-cm-diam hole was cut through its center, as 
shown in Fig. 2. A tantalum inertial backload was epoxied 
to the piezoelectric crystal and a thin piece of copper foil 
was epoxied to the face of the transducer for attachment of 
an electrical lead. The transducer was then epoxied to the 
end of the rod, as illustrated in Fig. 1. A Philtek ABH 
88N2 fiber optic probe was positioned in the hole for a 
direct measurement of the displacement at the source. As- 
suming that the hole in the transducer is small in compar- 
ison to the wavelength of the acoustic signal, as was the 
case, the optical probe can be used to make measurements 
of the source displacement sensitive to 10 -9 m over a fre- 
quency range of dc to 200 kHz. 

The source transducer was driven with a Hewlett- 

Packard 3314A function generator that was amplified by a 
Crown PSA-2 power amplifier. Typically, a single fre- 
quency or an amplitude modulated N cycle wave train of 
fixed length was input to the source transducer, where N 
ranged from 8-25. Frequencies of 8 to 24 kHz were used 
and care was taken to assure that there was no overlap with 
reflections from the opposite end of the rod in the mea- 
sured signals. Detected signals were output to a 16-bit An- 
alogic 6100B/652 waveform analyzer. 

III. RESULTS 

The basic experimental observation providing evidence 
for the nonlinear behavior of the rock is shown in Fig. 3. In 
Fig. 3 (a) we show the spectral composition of the displace- 
ment of the source transducer while being driven at 13.75 
kHz. The five different curves correspond to five ampli- 
tudes of the source transducer varying over a factor of 
approximately 50. It is notable that, as the amplitude at the 
fundamental (drive) frequency was increased, the ampli- 
tude at frequencies other than the drive frequency re- 
mained very low (the 2(0 harmonic is down by approxi- 
mately two orders of magnitude from the fundamental and 
no higher harmonics are observed). In Fig. 3 (b), we show 
the spectral composition for the five drive amplitudes after 
the signal has propagated 58 cm (about three wavelengths) 
from the source transducer. Comparison of Fig. 3 (a) and 
(b) reveals the presence of rich harmonic content at 58 cm 
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FIG. 3. (a) Source spectra as measured with the optical probe for a 
13.75-kHz drive. (b) Spectra after the wave has propagated 58 cm for a 
13.75-kHz drive. 

from the source transducer which 'does not exist at the 

source. Further, these higher harmonic displacement fields 
have amplitudes that are a sensitive function of the drive 
amplitude. We will return to a more careful look at the 
content of Fig. '3 below. 

First, let us ask whether the nonlinear behavior we are 
seeing is the nonlinear behavior expected from the discus- 
sion in Sec. I. In what follows, we discuss the behavior of 
three important amplitudes. In order to avoid confusion, 
we list them here. They are: (1) u• (x,2•o), the amplitude 
of the signal at frequency 2•o and distance x from a source 
driven at frequency •o; (2) u0(x,2•o), the amplitude of the 
signal at distance x and frequency 2•o from a source driven 
at frequency 2•o; and (3) Uo(X,OO), the amplitude of the 
signal at distance x and frequency •o from a source driven 
at frequency •o. In Sec. I we noted that there are three 
signatures of the 2•o harmonic generated by the nonlinear- 
i ty in Eq. ( 1 ): 

FIG. 5. Dependence of harmonic content on source amplitude, 
u•(x,2o•) cr U 2 (14.6-kHz drive, x=58 cm). 

(1) u•(x,2•o) o:x, 

(2) u•(x,2•o) o: U 2, 

(3) u•(x,2•o) o:•o 2. 

In Figs. 4-6, we show evidence that the observed 2•o har- 
monic has an amplitude that is consistent with these ex- 
pectations. 

In Fig. 4 we show the relative amplitude R of the first 
harmonic versus distance from the transducer for a 14.6- 

kHz drive. The relative amplitude is calculated by taking 
the ratio of the harmonic amplitude u• (x,2•o) to the am- 
plitude of a linear elastic wave of frequency 2•o, u0(x,2•o). 
[The amplitude of the wave u0(x,2•o) was relatively small, 
so it is assumed that it propagates linearly.] This ratio was 
taken in order to correct for transducer site effects and 

attenuation. According to Eq. (2), this ratio is propor- 
tional to the distance from the source: 

u• (x,2•o) 
R-- o:x. (3) 

u0(x,2•o) 

The result in Fig. 4 is in essential agreement with this 
prediction. [The fluctuations about the dashed line in Fig. 
4 may be caused by position and frequency dependent elas- 
tic scattering from the periodic array of pinducers. As is 
explained in the Appendix, the effect of the periodic scat- 
terers is to cause rapid spatial fluctuations in wave ampli- 
tude along the length of the rod and an effective increase in 
absorption in the rod. The measured attenuation in the rod 
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FIG. 4. Dependence of harmonic content on propagation distance, 
u•(x,2o•) c•x ( 14.6-kHz drive). 

FIG. 6. Dependence of harmonic content on frequency, 
Ul(X,2o)/U2 o•o 2 (x=3 cm). 
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implies that the quality factor Q is about 10, far lower than 
other measured values that range from 30-110 (Refs. 19 
and 20). As the Appendix implies, the low Q measured 
here may be due to scattering.] 

In Fig. 5 we show u•(x,2to) vs U 2 at x=58 cm for a 
drive frequency of 13.75 kHz. In order to form the ratio of 
u • (x,2to) to U 2, we calibrated the pinducers using the fol- 
lowing procedure: (1) directly measure the displacement 
amplitude of the source using the optical probe described 
in Sec. II, and (2) determine the attenuation coefficient as 
a function of frequency (with low-input amplitude) by fit- 
ting the response of the pinducers as a function of x to 

Uo ( x, oo ) = Ue -'•( ø' )". ( 4 ) 

The absolute amplitude at x, found by combining ( 1 ) and 
(2), lets us calibrate the pinducers. This calibration had an 
uncertainty of about 25% due to the uncertainty in the 
measurement of a. The error bars on the data indicate the 

scatter in the ratio over many measurements. The result 
shown in Fig. 5 strongly supports u•(x,2•o) •c U 2. 

In Fig. 6 we show u•(x,2oo)/U 2 vs f2(=[•o/2•r]2) 
measured at x = 3 cm. The quantity u • (x,2•o) / U 2 was mea- 
sured as the best fit slope of u• (x,2•o) vs U 2 in plots like 
Fig. 5. The error bars were assigned according to the 25% 
measurement uncertainty determined from the calibration 
of the pinducers. The result shown in Fig. 6 strongly sup- 
ports u • (x,2to) cc to 2. 

As a consequence of the agreement between the behav- 
ior of the observed 2to harmonic amplitude and our model, 
Eq. (2), we feel confident that a significant portion of the 
observed response is due to the cubic anharmonicity of the 
elastic moduli of the rock. Thus we are justified in further 
analyzing the data using the model of Sec. I. From Eq. (2): 

u• (x,2to) 
U2(D2 • 2c 2 ' 

where c=2.60X 1034-0.05X 103 m/s, to/2•r= 13.75 
4-0.002 kHz, and x= 3.04-0.5 cm for the data in Fig. 6. 
Thus we calculate the compressional wave nonlinear pa- 
rameter I/SI =7.0x 1034- 25% for the sandstone sample as- 
suming that attenuation is negligible. For the calculation of 
I/S I, this is a reasonable assumption because the measured 
attenuation length (1/or) for 13.75 kHz is about 40 cm and 
the measurements used in the calculation were taken at 

x = 3 cm. This introduces a margin of error in [/51 , which 
is within the measurement uncertainty of 25%. However, 
in general it may be necessary to incorporate attenuation 
into the theoretical description given by Eqs. (1) and (2). 
The inclusion of attenuation is considered by McCall. •8 

The results in Fig. 3 (a) and (b) show spectral growth 
at the higher harmonics which are described by higher 
order terms in Eq. ( 1 ) and a higher order solution in Eq. 
(2). In particular, we find that the 3•o harmonic grows 
roughly proportional with U 3, a result which is in agree- 
ment with a second order correction to Eq. (2).•8 We also 
observe strong growth of the odd harmonics, 3•o and 5•o. 
This suggests that higher order terms (i.e., cubic anharmo- 

nicity) in the strain energy relationship may be necessary 
to give a complete description of nonlinear elasticity obser- 
vations in rock. 

IV. CONCLUSIONS 

Large amplitude waves propagating in Berea sand- 
stone were found to exhibit effects described by nonlinear 
elasticity theory. Measurements show an increase in the 
relative harmonic content with propagation distance and 
an increase in harmonic content with increasing source 
amplitude and frequency. From the frequency dependent 
measurements of harmonic content, a value for the com- 
pressional wave nonlinear parameter of Berea sandstone 
was calculated to be IB1=7.0x1034-25%. This result 
demonstrates the strong elastic nonlinearity that is charac- 
teristic of microcracked solids and that has also been ob- 

served in other disordered media. 5'6'2• 
These results indicate that seismic wave propagation 

may include significant energy transfer between source fre- 
quencies and harmonics, and could ultimately affect the 
manner in which seismic sources are modeled. The agree- 
ment of our results with theory, •8 suggests that the theory 
could be successfully applied to seismic modeling. 

In future work, we will study nonlinear effects in three 
dimensions and eventually over the seismic frequency band 
at varying temperature and pressure. We are also in the 
process of conducting laboratory experiments with a para- 
metric array that we hope can eventually be used in the 
imaging of the Earth. 
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APPENDIX 

The purpose of the discussion in this Appendix is to 
describe the influence of an (periodic) array of scatterers 
on the response of a one-dimensional elastic system. We 
include this discussion because the measured wave attenu- 

ation in the rod is orders of magnitude larger with the 
pinducers embedded in the rod than without the pins. We 
therefore accounted for the additional attenuation by use 
of the model described here. From McCall, •s we see that in 
order to describe this response we require the Green's func- 
tion for the linear response (i.e., both linear elasticity and 
linear attenuation) of the system. We use this Green func- 
tion to propagate the disturbance at x--0, due to the ex- 
ternal source, into the interior of the system. There, be- 
cause of nonlinear elasticity, this disturbance serves as an 
internal source. Thus we also need the Green's function to 

propagate the disturbance from the internal source to the 
receiver transducers. When the interior of the sample con- 
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FIG. A1. Position and frequency-dependent scattering effects. 

tains a sequence of scatterers, the Green's function called 
for must, in principle, be faithful to their presence. For the 
case at hand, the sequence of scatterers is the periodic 
array of transducers that are an integral part of the exper- 
imental system. So the Green's function needed is that for 
the propagation of a wave through a linear elastic material 
in the presence of a periodic sequence of scatterers. This 
Green's function can be developed (even for the case of a 
random array of scatterers) in terms of transfer matrices 
which carry the amplitudes of right-hand and left-hand 
going waves across the scattering regions. This is the so- 
called propagation matrix method used in a broad variety 
of problems. As our purpose here is to provide a qualitative 
explanation of important features seen in the data (the 
excess attenuation and the frequency-dependent amplitude 
fluctuations from one detector to the next), we will not 
write out the details of the solution to this problem. 
Rather, we will quote the results of several model calcula- 
tions to illustrate these points and leave exhibition of the 
details to the future. 

The computations required for the treatment of the 
problem at hand are essentially the same as those required 
to do the localization problem. 22 In Fig. A1 we show the 
amplitude at transducers 1-20 for elastic waves with fre- 
quencies of 5-25 kHz, Q= 50, propagating into a material 
having the elastic properties of our sample. The 20 scatter- 
ers, spaced 5 cm from one another, are taken to be regions 
of width w having velocity of sound c2 > C l. While this 
model of the probes is not intended to be precise, it pro- 
vides a simple realization of the important features in the 
structure of the transfer matrices that must characterize 

the probes. We note that in Fig. A1, while the intrinsic Q 
is of order 50, the apparent Q is of order 10. We also show 
the influence of frequency on the amplitude at detectors 
1-20. Note that, as the frequency increases, so does the 
apparent attenuation due to scattering. At a fixed scatter- 
ing sight, the amplitude, decaying on average more rapidly 
as frequency increases, fluctuates with frequency because 
of interference effects caused by the scatterers. These re- 

sults are in qualitative and semiquantitative accord with 
experiment. 
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